Drugs previously in development for SARS could be effective for COVID-19

A potential drug target has been identified in a newly mapped protein of SARS-CoV-2, the virus that causes the coronavirus disease first discovered in 2019 (known as COVID-19). The structure was solved by a team including the University of Chicago, Argonne National Laboratory, Northwestern University Feinberg School of Medicine and the University of California, Riverside School of Medicine.

The scientists said their findings suggest drugs that had previously been in development to treat the earlier SARS outbreak could now be developed as effective drugs against COVID-19.

The protein Nsp15 from the new coronavirus is 89% identical to the protein from the 2010 outbreak of SARS. Studies published in 2010 on the SARS virus revealed that inhibition of Nsp15 can slow viral replication. This suggests drugs designed to target Nsp15 could be developed as effective drugs against COVID-19.

This new structure was solved by the group of University of Chicago Prof. Andrzej Joachimiak, director of the Structural Biology Center at Argonne’s Advanced Photon Source, in conjunction with the Center for Structural Genomics of Infectious Diseases. Dr. Joachimiak is a co-director of the center.

“The newly mapped protein, called Nsp15, is conserved among coronaviruses and is essential in their lifecycle and virulence,” said Joachimiak. “Initially, Nsp15 was thought to directly participate in viral replication, but more recently, it was proposed to help the virus replicate possibly by interfering with the host’s immune response.”

Read more at UChicago News.

Image courtesy Joachimiak et al.