In a groundbreaking study, a group of University of Chicago scientists announced they were able to turn IBM’s largest quantum computer into a quantum material itself.

They programmed the computer such that it turned into a type of quantum material called an exciton condensate, which has only recently been shown to exist. Such condensates have been identified for their potential in future technology, because they can conduct energy with almost zero loss.

“The reason this is so exciting is that it shows you can use quantum computers as programmable experiments themselves,” said paper co-author David Mazziotti, a professor in the Department of Chemistry, the James Franck Institute and the Chicago Quantum Exchange, and an expert in molecular electronic structure. “This could serve as a workshop for building potentially useful quantum materials.”

For several years, Mazziotti has been watching as scientists around the world explore a type of state in physics called an exciton condensate. Physicists are very interested in these kinds of novel physics states, in part because past discoveries have shaped the development of important technology; for example, one such state called a superconductor forms the basis of MRI machines.

Though exciton condensates had been predicted half a century ago, until recently, no one had been able to actually make one work in the lab without having to use extremely strong magnetic fields. But they intrigue scientists because they can transport energy without any loss at all—something which no other material we know of can do. If physicists understood them better, it’s possible they could eventually form the basis of incredibly energy-efficient materials.

Read more at UChicago News.

Photo: UChicago scientists programmed an IBM quantum computer to become a type of material called an exciton condensate. Photo by Andrew Lindemann/IBM